How we could sleep better – in less time everyday

How we could sleep better – in less time everyday

We can now amplify the restorative benefits of sleep. Could this help us cope with later nights and early mornings?

We often wear our sleeplessness as a badge of pride – a measure of our impossibly hectic schedules. Thomas EdisonMargaret ThatcherMartha Stewart and Donald Trump have all famously claimed to get by on just four or five hours’ sleep a night – much less than the seven-to-nine hours recommended to most adults. Many of us are following suit: according to the Centers for Disease Control and Prevention, more than one third of US adults fail to get enough sleep on a regular basis.

The consequences – including impaired memory and decision making, and increased risk of infection and obesity –  are well known, but easy to ignore. When our immediate demands exceed the hours in the day, sleep is still our top sacrifice.

But what if we were able to simply optimise the sleep experience so that we enjoyed most of the benefits of deep sleep, in less time?

This possibility may be closer than it sounds, thanks to new ‘sleep optimisation’ techniques. Various experiments across the world have shown that it is possible to boost the efficiency of the brain’s night-time activity – speeding up the descent into deep sleep and enhancing our rest once we get there.

It sounds almost too good to be true. Is it?

A slower beat

On a regular night, the brain cycles through many different stages of sleep, each with a characteristic pattern of ‘brain waves’, in which neurons in different regions of the brain fire together, in synchrony, at a particular rhythm. (It’s a bit like a crowd chanting or beating a drum in unison).

It is notoriously hard to convince sleep-deprived people to make the necessary lifestyle changes

During the rapid eye movement (REM) phases that rhythm is fairly fast – during which time we are most likely to dream. But at certain points our eyes cease to move, our dreams fade and the rhythm of the brain waves drops to less than one ‘beat’ a second – at which point we enter our deepest, most unresponsive state of unconsciousness called ‘slow-wave sleep’.

It is this stage that has been of particular interest to scientists investigating the possibility of sleep optimisation.

Margaret Hilda Thatcher, Baroness Thatcher, LG, OM, DStJ, PC, FRS, HonFRSC (née Roberts; 13 October 1925 – 8 April 2013)
Margaret Thatcher is one of many powerful figures throughout history who have claimed to sleep on four or five hours a night, well below optimal levels.

Research since the 1980s has shown that slow-wave sleep is essential for the brain’s maintenance. It allows the necessary brain regions to pass our memories from short-term to long-term storage – so that we don’t forget what we have learnt. “The slow waves facilitate the transmission of information,” says Jan Born, director of the Department of Medical Psychology and Behavioural Neurobiology at the University of Tübingen, Germany.

The slow waves may also trigger the flow of blood and cerebrospinal fluid through the brain, flushing out potentially harmful debris that could cause neural damage. They also lead to dips in the stress hormone cortisol and help to rejuvenate the immune system so that it is readier to fight incoming infections.

Such results led scientists including Born to wonder whether we might therefore be able to enhance the benefits of sleep and improve our daytime functioning by boosting the production of those slow waves.

One of the most promising techniques to do so works a bit like a metronome counting the brain into the correct rhythms. Experimental participants wear a headset that records their brain activity and notes when they have started to make those slow waves. The device then plays short pulses of gentle sound, beginning in sync with the brain’s natural slow waves, at regular intervals over the night. The sounds are quiet enough to avoid waking the participant, but loud enough to be registered, unconsciously, by the brain.

the right brain rhythms, deepening the slow-wave sleep compared with people receiving sham stimulation
More companies are chasing ways to help customers achieve the deep, ‘slow-wave’ sleep that’s essential for memory and brain maintenance

Born has led much of the experimental work, finding that this gentle auditory stimulation is just enough to reinforce the right brain rhythms, deepening the slow-wave sleep compared with people receiving sham stimulation. Participants wearing the headset performed better on memory tests, showing increased recall for material they had learnt the day before. It also altered their hormonal balance – reducing their cortisol levels – and led to an improved immune response.

In the trials to date, participants haven’t yet reported unwanted responses to the technique. “We can’t really be sure, but so far there are no obvious side effects,” says Born.

Better sleep, in a store near you

Most of the studies attempting to boost slow-wave sleep have been conducted on small groups of young, healthy participants, so to be certain of the benefits of boosting slow-wave sleep, we would need to see larger trials on more diverse groups. But based on the existing evidence, the technology has already made its way into a handful of consumer devices, mostly in the form of headbands to be worn overnight.

The French start-up Dreem, for instance, has produced a headband (available for around €400 or £330) that also uses auditory stimulation to boost slow-wave sleep using a similar set-up to the scientific experiments – effects have been confirmed in a peer-reviewed trial. The Dreem device also connects to an app that analyses your sleep patternsand offers practical advice and exercises to help you get a better night’s rest. These include things such as meditation and breathing exercises that might ensure you get to sleep quicker and with fewer awakenings during the night. The aim is to improve overall sleep quality across the night for anyone who feels that they could do with a deeper rest.

Philips sound-based SmartSleep system aims to maximize the benefits of adequate rest
Electronics giant Philips is also getting in on the sleep aid game: its sound-based SmartSleep system aims to maximize the benefits of adequate rest

Philips’s SmartSleep Deep Sleep Headband, in contrast, is very explicitly aimed at making up for some of the ill-effects of sleep deprivation – for people “who, for whatever reason, are simply not giving themselves an adequate sleep opportunity”, says David White, Philips’ chief scientific officer.

The device was first launched in 2018, and like Dreem’s product, it is a headband that senses the brain’s electrical activity and periodically plays short bursts of sound to stimulate the slow oscillations that are characteristic of deep sleep. It relies on smart software that carefully adapts the volume of its sound over time to ensure that it delivers the optimum level of stimulation for the specific user. (The device is currently only available in the US for $399.)

White agrees that the device cannot fully replace a full night’s sleep, but he says that it is notoriously hard to convince sleep-deprived people to make the necessary lifestyle changes. By amplifying the benefits of the sleep they do manage to get, this device should at least help them to function better in daily life. Along these lines, Philips’s own experiments have reportedly confirmed that the SmartSleep boosts slow-wave sleep in sleep-deprived people, and that it mitigates some of the immediate effects like poorer memory consolidation.

Future research may suggest many more innovative ways to optimise our sleep. Aurore Perrault at Concordia University in Montréal has recently tested a gently rocking bed that swayed back and forth every four seconds.

Participants were quicker to enter slow-wave sleep, and spent more time in that crucial sleep cycle, as the brain waves synchronised with the external movement

She says that the technique was inspired by a colleague’s new-born baby being rocked to sleep, leading the team to wonder whether adults may also benefit from gentle movement. Sure enough, they found that the participants were quicker to enter slow-wave sleep, and spent more time in that crucial sleep cycle, as the brain waves synchronised with the external movement. As you might hope, they also reported feeling more relaxed at the end of the night, and this was again accompanied by the expected knock-on benefits for their memory and learning. “That was the cherry on the top,” says Perrault.

If such a bed were brought to market it could serve a similar purpose to the sound-stimulating headbands. Perrault is particularly interested whether it might help older people. The amount of time we spend in short-wave sleep seems to decline as we age, potentially contributing to some age-related memory problems – and she hopes that gently swaying beds may be one way to counteract that.

Still, get some sleep

Although the field is still in its infancy, these studies show that there is a lot of promise in the general concept of sleep optimisation to increase the power of our slumbers (however much or little we get).

Perrault and Born are both optimistic about the potential of the commercial products using pulses of sound to stimulate those regenerative slow waves. Perrault emphasises that we still need larger studies to ensure their effectiveness outside the carefully controlled conditions of the lab – but she welcomes that this research could now benefit a wider population.

“It’s great that they’re trying, more and more, to use external stimulation because we know that it impacts sleep,” says Perrault.

In the future, it will be interesting to see whether sleep optimisation could also bring benefits in the long term. We know that chronic sleep loss can increase the risk of conditions like diabetes and even Alzheimer’s disease – but it’s by no means clear that these new techniques will help reduce those risks.

For now the only guaranteed way of reaping all the benefits of sleep – both long and short-term – is to make sure you get enough of it. Whether or not you decide to give these devices a try, you should attempt to schedule more early nights, and avoid too much alcohol, caffeine and screen time before bed – factors that are all known to damage the quality of our sleep.

Our brains cannot function without a recharge – and anyone hoping to live a happy, healthy, productive life needs to wake up to that fact.

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...

DID YOU KNOW?!

Lumin UVC Disinfection

Lumin UVC works on multiple household items!

Although a great way to disinfect CPAP masks and water chambers, the Lumin is not limited to disinfecting only CPAP items. Any non-living item which can fit inside the Lumin tray can be disinfected. This includes common items such as dentures, toothbrushes, hearing aids, small children toys and many more!

Lumin UVC sanitizes personal items!

Although a great way to disinfect CPAP masks and water chambers, the Lumin is not limited to disinfecting only CPAP items. Any non-living item which can fit inside the Lumin tray can be disinfected. This includes common items such as dentures, toothbrushes, hearing aids, small children toys and many more!

What can you put in the Lumin UVC?

RemoteHearing AidPacifiers
Tooth BrushPensDentures
PhoneSwim gogglesEyeglasses
CPAP MaskCPAP TubingToys
And many more!

You can use the Lumin UVC to disinfect any required item that safely fits into the drawer!

The Multi-Purpose Disinfecting Machine

What is Lumin UVC Sanitizing System - Lumin CPAP Interface and Accessories Cleaner?
Lumin UVC Sanitizing System – Lumin CPAP Interface and Accessories Cleaner
2 Year Warranty Lumin UVC
1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...

Lumin UVC Sanitizing System – Lumin CPAP Interface and Accessories Cleaner

What is Lumin UVC Sanitizing System - Lumin CPAP Interface and Accessories Cleaner?

The Lumin UV Light Sanitizing Device from 3B Medical is a safe and effective alternative to harsher, more expensive devices on the market today used to sanitize HOME & Medical equipment. In other words the Lumin UVC uses a powerful amount of UV light contained inside of a fail-safe chamber to kill bacteria in just five minutes.

Lumin UVC Sanitizing System - Lumin CPAP Interface and Accessories Cleaner
Lumin UVC Sanitizing System – Lumin CPAP Interface and Accessories Cleaner

Lumin UVC – Disinfection & Cleaning

What is Lumin UVC?

Lumin is the easiest and fastest way to clean a CPAP mask and accessories. At first Lumin works with a cleaning cycle time of 5 minutes. Equally important NO harmful ozone, and a 99.9% kill rate for harmful bacteria, viruses, mold and fungus. It is the ideal high margin retail accessory for a DME servicing CPAP patients.

DISINFECTION – Cleaning

Quick 5 Min cleaning – Interface Disinfection

Lumin UVC works by emitting high energy light within a narrow spectrum referred to as UV-C. The device relies on a low-pressure, mercury-arc germicidal lamp designed to produce the highest amounts of UV light – where 90% of energy is generated around 254nm. Especially the dose of UV-C emitted in one 5-minute cycle is sufficient to kill most bacteria and mold on a surface.

RELIABILITY

UV Light kills 99% of Bacteria

UV light will disinfect up to 99% of harmful bacteria, pathogens, and fungi that can cause infection and illness. Lumin UV light is also the safest disinfection option on the market, there is NO HARMFUL OZONE.

SAFETY

Safe and Easy to Use

The 5-minute ozone FREE cleaning cycle with no need for water or harmful chemicals. Specifically makes Lumin the safest and easiest choice for interface and accessory cleaning.

ECO-FRIENDLY

No Harmful Ozone

The use of UV-C is environmentally friendly, leaves no residue or toxic gases or chemicals. For example UV-C systems are currently in use to disinfect ambulances, emergency service vehicles and other high touch areas.

AFFORDABLE

Reasonably Priced

Above all a fair and reasonable price of a Lumin UVC is fair to patients. One of our most popular items. Perfect for everyday use. Exceptional quality and choice. Lumin CPAP mask cleaner and sanitizer is a clever financial investment for anybody who needs to maintain CPAP devices clean and sanitized. In conclusion the device features an appropriate cost, it is easy to run and requires no maintenance whatsoever.

1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)
Loading...

CPAP Devices Drive DeVilbiss Healthcare

CPAP Devices - Drive DeVilbiss Healthcare
Sleep with an IntelliPAP®2 AutoAdjust® CPAP System - DV64 Series
Living well shouldn’t be hard. Find out how the Canadian can reducing costs, enhancing efficiency and improving quality of life. To advance the well-being of everyone in society.

You talked, we listened, everyone gets what they need. The DeVilbiss IntelliPAP® Platform has been designed with patients and providers in mind, incorporating many of the recommendations solicited through research to optimize patient comfort and adherence. The IntelliPAP combination of comfort, education and adherence tracking with SmartCode® and SmartLink® as well as the patented comfort feature called SmartFlex® help to ensure patient compliance – all in a highly efficient platform that makes great business sense for providers.

DeVilbiss Healthcare manufactures a range of IntelliPAP devices to treat Obstructive Sleep Apnea (OSA) and Sleep Disordered Breathing (SDB).

IntelliPAP®IntelliPAP Standard Plus®IntelliPAP AutoAdjust®IntelliPAP Bilevel S®IntelliPAP AutoBilevelIntelliPAP®2 Standard Plus® CPAP SystemIntelliPAP®2 AutoAdjust® CPAP System
DV51 SeriesDV53 SeriesDV54 SeriesDV55 SeriesDV57 SeriesDV63 SeriesDV64 Series
Pressure Settings 3–20 H20 cm xxx  xx
Pressure Settings 3–25 H20 cm   xx
While Breathing Compliance xxxxxxx
Event Detection xxxxxx
SmartFlex Exhale Pressure Relief  xx  xx
Patented Flow Rounding  xxxxxx
Automatic Leak Compensationxxxxxxx
Auto ON and Auto OFFxxxxxxx
Visual Mask Off Alertxxxxxxx
Onboard Filter Clean Reminderxxxxxxx
Remote Control Capabilities xxxxxxx
Integrated Heated Humidifierx (HH model)x (HH model)x (HH model)x (HH model)x (HH model)x (HH model)x (HH model)
Compliance Quick CodeSmartCodeSmartCodeSmartCodeSmartCode SmartCodeSmartCodeSmartCode
Detailed Usage DataSmartLinkSmartLinkSmartLinkSmartLinkSmarLinkSmarLinkSmarLink
Data Transfer via Memory CardSmartLinkSmartLinkSmartLinkSmartLink SmartLinkSmarLinkSmarLink
Remote Compliance Data RetrievalSmartCodeSmartCodeSmartCodeSmartCode SmartCodeSmartCodeSmartCode
Remote Efficacy Data Retrieval SmartCodeSmartCodeSmartCode SmartCodeSmartCodeSmartCode
PulseDose Breath Patternxx
1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)
Loading...

Sleep Tips and Advice

Sleep Tips and Advice

Do you like to have a weekend lie-in or a nightcap before going to bed? These habits could actually be harming your sleep.

Relax your mind

  • Simple breathing exercises can help. Breathe, using your abdomen not your chest, through your nose for three seconds, then breathe out for three seconds. Pause for three seconds before breathing in again. Practise this for ten minutes at night (five minutes is better than nothing).
  • Some people find that lavender oil, valerian or other herbs help them to sleep.
  • If you still have problems, you could try massage, aromatherapy, or even acupuncture.
  • If you still find yourself tossing and turning, abandon the bedroom and find something enjoyable and absorbing to do. Jigsaws are perfect. Don’t go back to bed until you begin to feel sleepy.
Relax your Mind
Relax your Mind

Exercise regularly

  • Regular exercise is a great way to improve your sleep. Just be careful not to do it close to bed time as exercise produces stimulants that stop the brain from relaxing quickly.
  • This being the case, exercising in the morning is an excellent way to wake up the body. Going for a run or doing some aerobics releases stimulants into the body, which perks you up.
  • If you are injured or disabled, you can still benefit from exercise. Check out disability exercise tips.
Exercise regularly
Exercise regularly

Create a calm bedroom environment

  • Your bedroom should be for sleep only. Avoid turning it into an entertainment centre with televisions, computers and stereos.
  • Two thirds of children have a computer, games machine or TV in their bedroom and could be losing out on sleep as a result.

Avoid alcohol

  • It’s fine to have a nightcap, but too much alcohol can make you restless. Alcohol is also a diuretic, which means it encourages you to urinate (never welcomed during the night).
  • Drinking is also more likely to lead to snoring, which can restrict airflow into the lungs. This reduces oxygen in your blood which disturbs your sleep and contributes to your hangover.

Avoid caffeine

  • Caffeine is a stimulant which can stay in your system for many hours. So avoid sources of caffeine such as coffee, chocolate, cola drinks and non-herbal teas.

Watch what you eat

  • Eating a large heavy meal too close to bedtime will interfere with your sleep.
  • Spicy or fatty foods may cause heartburn, which leads to difficulty in falling asleep and discomfort throughout the night.
  • Foods containing tyramine (bacon, cheese, ham, aubergines, pepperoni, raspberries, avocado, nuts, soy sauce, red wine) might keep you awake at night. Tyramine causes the release of norepinephrine, a brain stimulant.
  • If you get the munchies close to bedtime, eat something that triggers the hormone serotonin, which makes you sleepy. Carbohydrates such as bread or grain, cereal will do the trick.
Cereals - Watch what you eat
Cereals – Watch what you eat

Set a regular bedtime and wake up time

  • Create a habit of going to bed and waking up at the same time each day, even on weekends. This helps anchor your body clock to these times. Resisting the urge for a lie-in can pay dividends in alertness.
  • If you feel you haven’t slept well, resist the urge to sleep in longer than normal; getting up on schedule keeps your body in its normal wake-up routine.
  • Remember, even after only four hours, the brain has gained many of the important benefits of sleep.

It’s only natural

  • Most of us have a natural dip in alertness between 2 – 4pm.
  • A 15 minute nap when you’re tired can be a very effective way of staying alert throughout the day. Avoid napping for longer than 20 minutes, after which you will enter deep sleep and feel even worse when you wake up.

See a doctor if your problem continues

Ask us about FREE screening
Ask us about FREE screening:

If you have trouble falling asleep night after night, or if you always feel tired the next day, snore, or stop breathing during sleep you might have a sleep disorder. It is advisable to seek more advice from your doctor. Most sleep disorders can be treated effectively.

1 Star2 Stars3 Stars4 Stars5 Stars (5 votes, average: 5.00 out of 5)
Loading...

Sleep Apnea

Sleep Apnea

Sleep apnea is a common disorder that causes your breathing to stop or get very shallow. Breathing pauses can last from a few seconds to minutes. They may occur 30 times or more an hour.

Sleep apnea, also spelled sleep apnoea, is a sleep disorder characterized by pauses in breathing or periods of shallow breathing during sleep
Sleep Advice – improve your quality of life, organic solutions

Sleep apnea is the most common type of sleep disorder. It causes your airway to collapse or become blocked during sleep. Normal breathing starts again with a snort or choking sound. People with sleep apnea often snore loudly. However, not everyone who snores has sleep apnea.

You are more at risk for sleep apnea if you are overweight, male, or have a family history or small airways. Children with enlarged tonsils may also have it.

Doctors diagnose sleep apnea based on medical and family histories, a physical exam, and sleep study results.

A person may not be aware that his/her sleep is interrupted throughout the night due to snoring or obstructions. This is because he/she may not be fully conscious during these occurrences. However if a person feels drowsiness during the day, he/she should consult a doctor about getting a sleep study. People with sleep apnea are at higher risk for car crashes, work-related accidents, and other medical problems. If you have it, it is important to get treatment. Lifestyle changes, mouthpieces and surgery may help treat sleep apnea in many people if their diagnosis is mild. But if the diagnosis is moderate to severe, CPAP is the gold standard of treatment for optimal results.

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...

Sleep should be Prescribed

Sleep should be Prescribed

What those Late Nights out could be Costing you

Leading neuroscientist Matthew Walker explains why sleep deprivation is increasing our risk of cancer, heart attack and Alzheimer’s – and what you can do about it.

Matthew P. Walker
Matthew P. Walker

Matthew Walker has learned to dread the question “What do you do?” At parties, it signals the end of his evening; thereafter, his new acquaintance will inevitably cling to him like ivy. On an aeroplane, it usually means that while everyone else watches movies or reads a thriller, he will find himself running an hours-long salon for the benefit of passengers and crew alike. “I’ve begun to lie,” he says. “Seriously. I just tell people I’m a dolphin trainer. It’s better for everyone.”

Walker is a sleep scientist. To be specific, he is the director of the Center for Human Sleep Science at the University of California, Berkeley, a research institute whose goal – possibly unachievable – is to understand everything about sleep’s impact on us, from birth to death, in sickness and health. No wonder, then, that people long for his counsel. As the line between work and leisure grows ever more blurred, it is rare to meet a person who doesn’t worry about their sleep. But even as we contemplate the shadows beneath our eyes, most of us don’t know the half of it – and perhaps this is the real reason he has stopped telling strangers how he makes his living. When Walker talks about sleep, he can’t in all conscience, limit himself to whispering comforting nothings about camomile tea and warm baths. It’s his conviction that we are in the midst of a “catastrophic sleep-loss epidemic”, the consequences of which are far graver than any of us could imagine. This situation, he believes, is only likely to change if government gets involved.

Why We Sleep - Matthew Walker
Why We Sleep – Matthew Walker

Walker has spent the last four and a half years writing Why We Sleep, a complex but urgent book that examines the effects of this epidemic close up, the idea being that once people know of the powerful links between sleep loss and, among other things, Alzheimer’s disease, cancer, diabetes, obesity and poor mental health, they will try harder to get the recommended eight hours a night (sleep deprivation, amazing as this may sound to Donald Trump types, constitutes anything less than seven hours). But, in the end, the individual can achieve only so much. Walker wants major institutions and law-makers to take up his ideas, too. “No aspect of our biology is left unscathed by sleep deprivation,” he says. “It sinks down into every possible nook and cranny. And yet no one is doing anything about it. Things have to change: in the workplace and our communities, our homes and families. But when did you ever see an NHS poster urging sleep on people? When did a doctor prescribe, not sleeping pills, but sleep itself? It needs to be prioritised, even incentivised. Sleep loss costs the UK economy over £30bn a year in lost revenue, or 2% of GDP. I could double the NHS budget if only they would institute policies to mandate or powerfully encourage sleep.”

Why, exactly, are we so sleep-deprived? What has happened over the course of the last 75 years? In 1942, less than 8% of the population was trying to survive on six hours or less sleep a night; in 2017, almost one in two people is. The reasons are seemingly obvious. “First, we electrified the night,” Walker says. “Light is a profound degrader of our sleep. Second, there is the issue of work: not only the porous borders between when you start and finish, but longer commuter times, too. No one wants to give up time with their family or entertainment, so they give up sleep instead. And anxiety plays a part. We’re a lonelier, more depressed society. Alcohol and caffeine are more widely available. All these are the enemies of sleep.”

But Walker believes, too, that in the developed world sleep is strongly associated with weakness, even shame. “We have stigmatised sleep with the label of laziness. We want to seem busy, and one way we express that is by proclaiming how little sleep we’re getting. It’s a badge of honour. When I give lectures, people will wait behind until there is no one around and then tell me quietly: ‘I seem to be one of those people who need eight or nine hours’ sleep.’ It’s embarrassing to say it in public. They would rather wait 45 minutes for the confessional. They’re convinced that they’re abnormal, and why wouldn’t they be? We chastise people for sleeping what are, after all, only sufficient amounts. We think of them as slothful. No one would look at an infant baby asleep, and say ‘What a lazy baby!’ We know sleeping is non-negotiable for a baby. But that notion is quickly abandoned [as we grow up]. Humans are the only species that deliberately deprive themselves of sleep for no apparent reason.” In case you’re wondering, the number of people who can survive on five hours of sleep or less without any impairment, expressed as a percent of the population and rounded to a whole number, is zero.

The world of sleep science is still relatively small. But it is growing exponentially, thanks both to demand (the multifarious and growing pressures caused by the epidemic) and to new technology (such as electrical and magnetic brain stimulators), which enables researchers to have what Walker describes as “VIP access” to the sleeping brain. Walker, who is 44 and was born in Liverpool, has been in the field for more than 20 years, having published his first research paper at the age of just 21. “I would love to tell you that I was fascinated by conscious states from childhood,” he says. “But in truth, it was accidental.” He started out studying for a medical degree in Nottingham. But having discovered that doctoring wasn’t for him – he was more enthralled by questions than by answers – he switched to neuroscience, and after graduation, began a PhD in neurophysiology supported by the Medical Research Council. It was while working on this that he stumbled into the realm of sleep.

“I was looking at the brainwave patterns of people with different forms of dementia, but I was failing miserably at finding any difference between them,” he recalls now. One night, however, he read a scientific paper that changed everything. It described which parts of the brain were being attacked by these different types of dementia: “Some were attacking parts of the brain that had to do with controlled sleep, while other types left those sleep centres unaffected. I realised my mistake. I had been measuring the brainwave activity of my patients while they were awake, when I should have been doing so while they were asleep.” Over the next six months, Walker taught himself how to set up a sleep laboratory and, sure enough, the recordings he made in it subsequently spoke loudly of a clear difference between patients. Sleep, it seemed, could be a new early diagnostic litmus test for different subtypes of dementia.

After this, sleep became his obsession. “Only then did I ask: what is this thing called sleep, and what does it do? I was always curious, annoyingly so, but when I started to read about sleep, I would look up and hours would have gone by. No one could answer the simple question: why do we sleep? That seemed to me to be the greatest scientific mystery. I was going to attack it, and I was going to do that in two years. But I was naive. I didn’t realise that some of the greatest scientific minds had been trying to do the same thing for their entire careers. That was two decades ago, and I’m still cracking away.” After gaining his doctorate, he moved to the US. Formerly a professor of psychiatry at Harvard Medical School, he is now professor of neuroscience and psychology at the University of California.

Does his obsession extend to the bedroom? Does he take his own advice when it comes to sleep? “Yes. I give myself a non-negotiable eight-hour sleep opportunity every night, and I keep very regular hours: if there is one thing I tell people, it’s to go to bed and to wake up at the same time every day, no matter what. I take my sleep incredibly seriously because I have seen the evidence. Once you know that after just one night of only four or five hours’ sleep, your natural killer cells – the ones that attack the cancer cells that appear in your body every day – drop by 70%, or that a lack of sleep is linked to cancer of the bowel, prostate and breast, or even just that the World Health Organisation has classed any form of night-time shift work as a probable carcinogen, how could you do anything else?”

There is, however, a sting in the tale. Should his eyelids fail to close, Walker admits that he can be a touch “Woody Allen-neurotic”. When, for instance, he came to London over the summer, he found himself jet-lagged and wide awake in his hotel room at two o’clock in the morning. His problem then, as always in these situations, was that he knew too much. His brain began to race. “I thought: my orexin isn’t being turned off, the sensory gate of my thalamus is wedged open, my dorsolateral prefrontal cortex won’t shut down, and my melatonin surge won’t happen for another seven hours.” What did he do? In the end, it seems, even world experts in sleep act just like the rest of us when struck by the curse of insomnia. He turned on a light and read for a while.

Will “Why We Sleep” have the impact its author hopes? I’m not sure: the science bits, it must be said, require some concentration. But what I can tell you is that it had a powerful effect on me. After reading it, I was absolutely determined to go to bed earlier – a regime to which I am sticking determinedly. In a way, I was prepared for this. I first encountered Walker some months ago, when he spoke at an event at Somerset House in London, and he struck me then as both passionate and convincing (our later interview takes place via Skype from the basement of his “sleep centre”, a spot which, with its bedrooms off a long corridor, apparently resembles the ward of a private hospital). But in another way, it was unexpected. I am mostly immune to health advice. Inside my head, there is always a voice that says “just enjoy life while it lasts”.

The evidence Walker presents, however, is enough to send anyone early to bed. It’s no kind of choice at all. Without sleep, there is low energy and disease. With sleep, there is vitality and health. More than 20 large scale epidemiological studies all report the same clear relationship: the shorter your sleep, the shorter your life. To take just one example, adults aged 45 years or older who sleep less than six hours a night are 200% more likely to have a heart attack or stroke in their lifetime, as compared with those sleeping seven or eight hours a night (part of the reason for this has to do with blood pressure: even just one night of modest sleep reduction will speed the rate of a person’s heart, hour upon hour, and significantly increase their blood pressure).

A lack of sleep also appears to hijack the body’s effective control of blood sugar, the cells of the sleep-deprived appearing, in experiments, to become less responsive to insulin, and thus to cause a prediabetic state of hyperglycaemia. When your sleep becomes short, moreover, you are susceptible to weight gain. Among the reasons for this are the fact that inadequate sleep decreases levels of the satiety-signalling hormone, leptin, and increases levels of the hunger-signalling hormone, ghrelin. “I’m not going to say that the obesity crisis is caused by the sleep-loss epidemic alone,” says Walker. “It’s not. However, processed food and sedentary lifestyles do not adequately explain its rise. Something is missing. It’s now clear that sleep is that third ingredient.” Tiredness, of course, also affects motivation.

Sleep has a powerful effect on the immune system, which is why, when we have flu, our first instinct is to go to bed: our body is trying to sleep itself well. Reduce sleep even for a single night, and your resilience is drastically reduced. If you are tired, you are more likely to catch a cold. The well-rested also respond better to the flu vaccine. As Walker has already said, more gravely, studies show that short sleep can affect our cancer-fighting immune cells. A number of epidemiological studies have reported that night-time shift work and the disruption to circadian sleep and rhythms that it causes increase the odds of developing cancers including breast, prostate, endometrium and colon.

Getting too little sleep across the adult lifespan will significantly raise your risk of developing Alzheimer’s disease. The reasons for this are difficult to summarise, but in essence it has to do with the amyloid deposits (a toxin protein) that accumulate in the brains of those suffering from the disease, killing the surrounding cells. During deep sleep, such deposits are effectively cleaned from the brain. What occurs in an Alzheimer’s patient is a kind of vicious circle. Without sufficient sleep, these plaques build up, especially in the brain’s deep-sleep-generating regions, attacking and degrading them. The loss of deep sleep caused by this assault therefore lessens our ability to remove them from the brain at night. More amyloid, less deep sleep; less deep sleep, more amyloid, and so on. (In his book, Walker notes “unscientifically” that he has always found it curious that Margaret Thatcher and Ronald Reagan, both of whom were vocal about how little sleep they needed, both went on to develop the disease; it is, moreover, a myth that older adults need less sleep.) Away from dementia, sleep aids our ability to make new memories, and restores our capacity for learning.

And then there is sleep’s effect on mental health. When your mother told you that everything would look better in the morning, she was wise. Walker’s book includes a long section on dreams (which, says Walker, contrary to Dr Freud, cannot be analysed). Here he details the various ways in which the dream state connects to creativity. He also suggests that dreaming is a soothing balm. If we sleep to remember (see above), then we also sleep to forget. Deep sleep – the part when we begin to dream – is a therapeutic state during which we cast off the emotional charge of our experiences, making them easier to bear. Sleep, or a lack of it, also affects our mood more generally. Brain scans carried out by Walker revealed a 60% amplification in the reactivity of the amygdala – a key spot for triggering anger and rage – in those who were sleep-deprived. In children, sleeplessness has been linked to aggression and bullying; in adolescents, to suicidal thoughts. Insufficient sleep is also associated with relapse in addiction disorders. A prevailing view in psychiatry is that mental disorders cause sleep disruption. But Walker believes it is, in fact, a two-way street. Regulated sleep can improve the health of, for instance, those with bipolar disorder.

What those late nights out could be costing you
What those late nights out could be costing you

I’ve mentioned deep sleep in this (too brief) summary several times. What is it, exactly? We sleep in 90-minute cycles, and it’s only towards the end of each one of these that we go into deep sleep. Each cycle comprises two kinds of sleep. First, there is NREM sleep (non-rapid eye movement sleep); this is then followed by REM (rapid eye movement) sleep. When Walker talks about these cycles, which still have their mysteries, his voice changes. He sounds bewitched, almost dazed.

REM and NREM sleep
REM and NREM sleep

“During NREM sleep, your brain goes into this incredible synchronised pattern of rhythmic chanting,” he says. “There’s a remarkable unity across the surface of the brain, like a deep, slow mantra. Researchers were once fooled that this state was similar to a coma. But nothing could be further from the truth. Vast amounts of memory processing is going on. To produce these brainwaves, hundreds of thousands of cells all sing together, and then go silent, and on and on. Meanwhile, your body settles into this lovely low state of energy, the best blood-pressure medicine you could ever hope for. REM sleep, on the other hand, is sometimes known as paradoxical sleep, because the brain patterns are identical to when you’re awake. It’s an incredibly active brain state. Your heart and nervous system go through spurts of activity: we’re still not exactly sure why.”

Does the 90-minute cycle mean that so-called power naps are worthless? “They can take the edge off basic sleepiness. But you need 90 minutes to get to deep sleep, and one cycle isn’t enough to do all the work. You need four or five cycles to get all the benefit.” Is it possible to have too much sleep? This is unclear. “There is no good evidence at the moment. But I do think 14 hours is too much. Too much water can kill you, and too much food, and I think ultimately the same will prove to be true for sleep.” How is it possible to tell if a person is sleep-deprived? Walker thinks we should trust our instincts. Those who would sleep on if their alarm clock was turned off are simply not getting enough. Ditto those who need caffeine in the afternoon to stay awake. “I see it all the time,” he says. “I get on a flight at 10am when people should be at peak alert, and I look around, and half of the plane has immediately fallen asleep.”

So what can the individual do? First, they should avoid pulling “all-nighters”, at their desks or on the dancefloor. After being awake for 19 hours, you’re as cognitively impaired as someone who is drunk. Second, they should start thinking about sleep as a kind of work, like going to the gym (with the key difference that it is both free and, if you’re me, enjoyable). “People use alarms to wake up,” Walker says. “So why don’t we have a bedtime alarm to tell us we’ve got half an hour, that we should start cycling down?” We should start thinking of midnight more in terms of its original meaning: as the middle of the night. Schools should consider later starts for students; such delays correlate with improved IQs. Companies should think about rewarding sleep. Productivity will rise, and motivation, creativity and even levels of honesty will be improved. Sleep can be measured using tracking devices, and some far-sighted companies in the US already give employees time off if they clock enough of it. Sleeping pills, by the way, are to be avoided. Among other things, they can have a deleterious effect on memory.

Those who are focused on so-called “clean” sleep are determined to outlaw mobiles and computers from the bedroom – and quite right, too, given the effect of LED-emitting devices on melatonin, the sleep-inducing hormone. Ultimately, though, Walker believes that technology will be sleep’s saviour. “There is going to be a revolution in the quantified self in industrial nations,” he says. “We will know everything about our bodies from one day to the next in high fidelity. That will be a seismic shift, and we will then start to develop methods by which we can amplify different components of human sleep, and do that from the bedside. Sleep will come to be seen as a preventive medicine.”

What questions does Walker still most want to answer? For a while, he is quiet. “It’s so difficult,” he says, with a sigh. “There are so many. I would still like to know where we go, psychologically and physiologically, when we dream. Dreaming is the second state of human consciousness, and we have only scratched the surface so far. But I would also like to find out when sleep emerged. I like to posit a ridiculous theory, which is: perhaps sleep did not evolve. Perhaps it was the thing from which wakefulness emerged.” He laughs. “If I could have some kind of medical Tardis and go back in time to look at that, well, I would sleep better at night.”

Sleep in numbers:

■ Two-thirds of adults in developed nations fail to obtain the nightly eight hours of sleep recommended by the World Health Organisation.

■ An adult sleeping only 6.75 hours a night would be predicted to live only to their early 60s without medical intervention.

■ A 2013 study reported that men who slept too little had a sperm count 29% lower than those who regularly get a full and restful night’s sleep.

■ If you drive a car when you have had less than five hours’ sleep, you are 4.3 times more likely to be involved in a crash. If you drive having had four hours, you are 11.5 times more likely to be involved in an accident.

■ A hot bath aids sleep not because it makes you warm, but because your dilated blood vessels radiate inner heat, and your core body temperature drops. To successfully initiate sleep, your core temperature needs to drop about 1C.

■ The time taken to reach physical exhaustion by athletes who obtain anything less than eight hours of sleep, and especially less than six hours, drops by 10-30%.

■ There are now more than 100 diagnosed sleep disorders, of which insomnia is the most common.

■ Morning types, who prefer to awake at or around dawn, make up about 40% of the population. Evening types, who prefer to go to bed late and wake up late, account for about 30%. The remaining 30% lie somewhere in between.

1 Star2 Stars3 Stars4 Stars5 Stars (7 votes, average: 4.86 out of 5)
Loading...

What is CPAP?

What is CPAP?
Continuous positive airway pressure (CPAP) is a form of positive airway pressure ventilator, which applies mild air pressure on a continuous basis to keep the airways continuously open in people who are not able to breathe spontaneously on their own.

CPAP, or continuous positive airway pressure, is a treatment that uses mild air pressure to keep the airways open. When a person sleeps, the muscles of the entire body relaxes. This includes the upper airway muscles surrounding the throat. These muscles may relax enough to collapse on the airway causing an obstruction of oxygen into the lungs and carbon dioxide out of the lungs; This is called obstructive sleep apnea (OSA). CPAP helps to prevent this collapse by pushing air into the throat creating an air stent. Once the airway is open, the person will be able breathe easily as he/she sleeps.

CPAP overview

CPAP treatment involves a CPAP machine, which has three main parts:

  • A mask or other device that fits over your nose or your nose and mouth. Straps keep the mask in place while you’re wearing it.
  • A tube that connects the mask to the machine’s motor.
  • A motor that blows air into the tube.

Some CPAP machines have other features as well, such as heated humidifiers. CPAP machines can be small. They are also lightweight and fairly quiet. 

CPAP is often the best treatment for obstructive sleep apnea. Sleep apnea is a common disorder that causes pauses in breathing or shallow breaths while you sleep. As a result, not enough oxygen reaches your lungs.

In obstructive sleep apnea, your airway collapses or is blocked during sleep. When you try to breathe, any air that squeezes past the blockage can cause loud snoring. Your snoring may wake other people in the house.

The mild pressure from CPAP can prevent your airway from collapsing or becoming blocked.

The animation below shows how CPAP works to treat sleep apnea. Click the “start” button to play the animation. Written and spoken explanations are provided with each frame. Use the buttons in the lower right corner to pause, restart, or replay the animation, or use the scroll bar below the buttons to move through the frames.

Install Flash

If your doctor prescribes CPAP, you’ll work with someone from a home equipment provider to select a CPAP machine. Home equipment providers sometimes are called durable medical equipment, or DME.

Your doctor will work with you to make sure the settings that he or she prescribes for your CPAP machine are correct. He or she may recommend an overnight sleep study to find the correct settings for you. Your doctor will want to make sure the air pressure from the machine is just enough to keep your airway open while you sleep.

There are many kinds of CPAP machines and masks. Let your home medical provider know if you’re not happy with the type you’re using. He or she may suggest switching to a different type that might work better for you.

CPAP outlook

CPAP has many benefits. It can:

  • Keep your airway open while you sleep
  • Correct snoring so others in your household can sleep
  • Improve your quality of sleep
  • Relieve sleep apnea symptoms, such as excessive daytime sleepiness
  • Decrease or prevent high blood pressure

Many people who use CPAP report feel more energetic once they begin treatment. They’re more attentive and better able to work during the day. They also report fewer complaints from bed partners about snoring and sleep disruption.

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...

Brain uses fluid to flush out trash every night

Brain uses fluid to flush out trash every night

During deep sleep, cerebrum cleans what it doesn’t need, study finds

During deep sleep, the brain may be tidying up the detritus that accumulates during a hard day of thinking, a recent study suggests.

Brain uses fluid to flush out trash every night
A study suggests the brain wipes out detritus with fluid as we sleep

Researchers have found that during slow-wave sleep in particular – the type of slumber sandwiched between periods of dreaming – a sort of cleaning fluid pulses into the brain, taking out the trash as it recedes, according to a report published in Science.

Using high-speed brain imaging, the researchers were able to map out a series of events that occur as the brain enters deep sleep and brain waves start to slow and synchronize.

They found that the blood flow to the brain diminishes, allowing for an influx of clear, colourless cerebrospinal fluid (CSF). That fluid surges in and sloshes around, washing away the day’s detritus of proteins and other waste substanc­es that might harm the brain if they aren’t cleared out. 

“We haven’t ever seen CSF waves on this scale in the awake brain, suggesting that sleep involves a unique pattern of fluid flow in the brain,” said Laura Lewis, an assis­tant professor of biomedical engi­neering at Boston University and the study’s senior author.

“Previous studies in animals from other labs have shown that during sleep, proteins such as be­ta-amyloid (one of two hallmark proteins implicated in Alzheimer’s disease) are cleared more rapidly from the brain,” Lewis said. “Based on these studies; we wondered why this might occur and we wanted to ask whether CSF changes during sleep because CSF is thought to be important for waste removal.” 

Lewis and her colleagues suspect that poor sleep in patients with neurological disorders might im­pact the tidying up process, leaving waste materials to accumulate, eventually leading to degeneration.

“We’re running new studies to test how these CSF waves may change in healthy aging and in neurological disorders,” she said. “We’re also going to test wheth­er this would be associated with less waste removal from the brain during sleep in these patients.”

The new research shows how the rhythmic flow of fluid during deep sleep could be the way the brain washes away waste, Danish researchers write in a commentary that accompanied the new study.

Understanding that process might shed a light on how dis­turbed sleep could be linked to certain neurologic disorders, write Soren Grubb, an assistant professor in the department of neuroscience at the University of Copenhagen, and Martin Laurit­zen, a professor of clinical neuro­physiology at Rigshospitalet.

“Disturbances of (slow wave sleep) commonly accompany ag­ing, major depressive disorders and dementia,” they note.

“It will be interesting to assess whether the CSF dynamics linked to SWS can be used as a biomark­er for disease states and whether strategies to restore SWS can res­cue brain function in neurodegen­eration.”

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...