Check your living environment with our new device

Check your living environment with our new device EcoVisor F4 / EcoVisor F2

WHAT IS THE SOEKS ECOVISOR F4?

The Soeks Ecovisor F4 is a handy device to have at home which carries out 4 important environmental tests. Namely: nitrate tester, dosimeter, EMF & water quality tester. The device is compact and easy to use. It features an intuitive touchscreen. To turn it on, you press and hold the OK button until it lights up. There is no setting up of any kind required, this device is ready to use straight out of the box.

EcoVisor F4 / EcoVisor F2 - NEW 2020
EcoVisor F4

What is CPAP?

Continuous positive airway pressure (CPAP) is a form of positive airway pressure ventilator, which applies mild air pressure on a continuous basis to keep the airways continuously open in people who are not able to breathe spontaneously on their own.

CPAP, or continuous positive airway pressure, is a treatment that uses mild air pressure to keep the airways open. When a person sleeps, the muscles of the entire body relaxes. This includes the upper airway muscles surrounding the throat. These muscles may relax enough to collapse on the airway causing an obstruction of oxygen into the lungs and carbon dioxide out of the lungs; This is called obstructive sleep apnea (OSA). CPAP helps to prevent this collapse by pushing air into the throat creating an air stent. Once the airway is open, the person will be able breathe easily as he/she sleeps.

CPAP overview

CPAP treatment involves a CPAP machine, which has three main parts:

  • A mask or other device that fits over your nose or your nose and mouth. Straps keep the mask in place while you’re wearing it.
  • A tube that connects the mask to the machine’s motor.
  • A motor that blows air into the tube.

Some CPAP machines have other features as well, such as heated humidifiers. CPAP machines can be small. They are also lightweight and fairly quiet. 

CPAP is often the best treatment for obstructive sleep apnea. Sleep apnea is a common disorder that causes pauses in breathing or shallow breaths while you sleep. As a result, not enough oxygen reaches your lungs.

In obstructive sleep apnea, your airway collapses or is blocked during sleep. When you try to breathe, any air that squeezes past the blockage can cause loud snoring. Your snoring may wake other people in the house.

The mild pressure from CPAP can prevent your airway from collapsing or becoming blocked.

The animation below shows how CPAP works to treat sleep apnea. Click the “start” button to play the animation. Written and spoken explanations are provided with each frame. Use the buttons in the lower right corner to pause, restart, or replay the animation, or use the scroll bar below the buttons to move through the frames.

Install Flash

If your doctor prescribes CPAP, you’ll work with someone from a home equipment provider to select a CPAP machine. Home equipment providers sometimes are called durable medical equipment, or DME.

Your doctor will work with you to make sure the settings that he or she prescribes for your CPAP machine are correct. He or she may recommend an overnight sleep study to find the correct settings for you. Your doctor will want to make sure the air pressure from the machine is just enough to keep your airway open while you sleep.

There are many kinds of CPAP machines and masks. Let your home medical provider know if you’re not happy with the type you’re using. He or she may suggest switching to a different type that might work better for you.

CPAP outlook

CPAP has many benefits. It can:

  • Keep your airway open while you sleep
  • Correct snoring so others in your household can sleep
  • Improve your quality of sleep
  • Relieve sleep apnea symptoms, such as excessive daytime sleepiness
  • Decrease or prevent high blood pressure

Many people who use CPAP report feel more energetic once they begin treatment. They’re more attentive and better able to work during the day. They also report fewer complaints from bed partners about snoring and sleep disruption.

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...

Lithium Polymer LiPo Rechargeable Batteries

Q:What is the difference between lithium rechargeable batteries and other rechargeable batteries?

A:First of all, this product belongs to the “polymer lithium ion battery,” namely “lithium battery “. Whereas the “rechargeable battery” refers to nickel-metal hydride or nickel-cadmium batteries, which are fundamentally different. Compared with NiMH or NiCd batteries, the lithium battery has such characteristics as high energy density, long cycle life, no memory effect, quick charging speed, ultra-low self-discharge, light weight and environment-friendly. In other word, the phone battery we use now is basically the lithium battery, which is well understood. The phone battery is also developed from nickel-cadmium and nickel hydrogen batteries. “Lithium battery” represents the best battery energy technology at present.

Q:Before that, is there no AA or AAA rechargeable lithium battery?

Lithium Rechargeable Batteries

A:All along, AA or AAA batteries have no lithium batteries in real sense, mainly because the electronic devices on the market using standardized batteries are all designed based on the voltage characteristics of dry batteries (Single voltage of 1.5V). Compared to the traditional standardized batteries, lithium-ion battery’s output voltage is higher (Single voltage of 3.7V). This unique chemical characteristic makes it, the best contemporary energy, have not been possible to enter this field, resulting in serious deficiencies of lithium-ion rechargeable battery in the application field of standardized cylindrical battery.

Q:How can Lithium Polymer Battery be in common use?

A:The 1.5V universal polymer lithium-ion batteries are the major research after years of exploration and research in seeking optimal power solution to portable electronics. It adopts the voltage conversion technology, converting the output voltage of 3.7V into 1.5V, which is fully compatible and alternative to traditional batteries. It has completed a great creation in the field of traditional standard batteries, making the lithium battery step forward to be universal.

Q:What is the difference between polymer lithium ion battery and ordinary lithium ion battery?

A:According to different electrolyte materials, lithium-ion batteries can be divided into polymer lithium ion battery (PLIB), and Li-ion battery (LIB). Ordinary lithium-ion battery refers to liquid lithium battery. In contrast, polymer lithium-ion battery has such characteristics as high energy density and good safety performance. Its quality increases by 20% compared with ordinary lithium-ion (liquid) battery.

Q:How long does it take to charge batteries?

A:It takes about 3 hours to fully charge AA battery and about 2 hours to fully charge AAA battery.   

Tips: Due to the special charging characteristics of lithium battery, when the charging time reaches half of the entire charge cycle, the battery has reached more than 85% of the full electric quantity. So in the case of emergencies, it just need half the charging time, thus saving your valuable time.

Q:What does the dual voltage of 1.5V / 3.7V on the battery label mean?

A:There are two sets of output voltage on the positive electrode of lithium batteries. The protruding one of 1.5V is universal battery voltage, users can use it normally, and the other is 3.7V in the groove, which is used to charge the battery.

Q:Why the product is marked of mWh rather than mAh?

A:mWh represents “milliwatt hour”, on behalf of the battery capacity. It is labelled in accordance with the new labeling specifications of lithium-ion batteries. mWh = mAh * voltage.

Q:What is the difference between lithium iron phosphate battery and universal polymer lithium battery?

A:The differences lie in:

1) Voltage: the voltage of lithium iron phosphate battery is 3.2 V. When fully charged, its actual voltage is 3.6 V or so. Such a high voltage is beyond the limit voltage of the appliances using AA or AAA universal battery. So it is easy to damage the appliances (note: this is why the businessman has repeatedly remind users that the battery fully charged should be placed more than 1 hour until the voltage drop, then they can use); universal lithium battery uses intelligent voltage transformation technology, with the constant voltage output voltage of 1.5 V, to ensure the standard voltage of the appliances. (You can check the input voltage parameters on the labels of electrical appliances)    Note: the use of this product is like the use of ordinary dry batteries, don’t need to add another bit bucket!

2) Security: Strictly speaking, lithium iron phosphate battery cannot be considered as “batteries”, it is just a cell, without protection circuit; uinversal lithium battery uses multiple intelligence protection circuit preventing overcharge, over discharge, short circuit, overheating, very safe to use. This is also a reason why the cost of the product is higher.   Note: lithium iron phosphate battery, because of no protection circuit, have been over discharged when many electrical equipment reach the lowest limit voltage. This is why businesses repeatedly remind users that: Do not charge the battery until it is completely discharged!

3) Capacity: generally, the highest capacity of lithium iron phosphate battery is 600mAh. Its nominal voltage is 3.2V, to be used with bit bucket. Take the electrical equipment using two AA batteries for example. Lithium iron phosphate battery: 600mAh * 3.2V * 1 = 1920mWh; Battery: 760mAh * 3.7V * 2 = 5624mWh; it can be seen that the capacity of lithium batteries is nearly three times that of lithium iron phosphate in the practical application.

Q:What is the concept of the product compared with the ordinary disposable batteries?

A:The product uses polymer lithium cells, which can be recycled 500 to 1000 times. The full charged electricity once is equivalent to that of 2 to 5 batteries. It is no exaggeration to say that a universal lithium battery is equivalent to 1000 to 1500 alkaline batteries, 5000 to 6000 ordinary KK batteries. That’s economical and environment-friendly.

Q:Can we charge other common rechargeable batteries with the special lithium battery’s charger? Or charge universal lithium batteries with ordinary NiMH battery’s charger?

A:No, you can’t! Because charging voltage is different, lithium battery charger is much more complex.

Q:How many mAh is the AA/PH5 battery of 2800 mWh equivalent to?

A:As this is a lithium polymer battery with nominal voltage of 3.7V, and batteries capacity of 760 mAh, when the voltage is converted into the output voltage of 1.5V, it will be more accurate to calculate in “mWh” (power) according to the latest national labelling standard. But compared with the nickel-metal hydride battery, when 1.2 V is divided by 2800 mWh, it is equivalent to more than 2330 mAh. But because the universal lithium is a constant voltage output, the efficient capacity can be released completely, so the stronger battery life of devices using larger electricity reflecting is several times stronger than that of the nickel-metal hydride batteries, or even ten times more.

Q:Is the battery safe?

A:It is very safe, because there are multiple protection mechanism inside the battery. If the voltage conversion circuit is damaged, protection circuit will truncate the output, and the output voltage will be zero.

Q:How about the 1.5 V AA rechargeable lithium battery?

A:Batteries of the AA / AAA rechargeable lithium ion are the best on the universal batteries market, according to the “best” does not mean that the battery manufacturing technology so mystical, but the materials inside the battery  – “cells” are changed, used polymer lithium ion cells, while the polymer lithium ion represents the contemporary the most optimal battery technology, so we said the battery is the “best”. , of course, the “best” is relative, lithium batteries due to a high energy, no memory effect, long cycle life, light weight and fast charging itself unique performance advantage has become the mainstream of the current battery power, and all of these “performance advantages of lithium battery is also relative to Ni-MH batteries, we have seen, in the high-end electronic products market is almost can not see the figure of Ni-MH batteries, replaced by lithium batteries; And in the field of general battery, namely we are the most common AA /AAA standard battery system development has been to stay in “nickel metal hydride phase,” battery is precisely at this time, apply a “voltage transformation technology” to “introduction” general batteries, lithium-ion batteries for contemporary general battery and battery technology “synchronous”. We can imagine, with the development of science and technology, technology updates, there may be a fuel cell in the future, better batteries energy sources such as nuclear power battery, but in the present stage of batteries, lithium batteries will occupy the mainstream market in a long time.

1 Star2 Stars3 Stars4 Stars5 Stars (2 votes, average: 5.00 out of 5)
Loading...

SOEKS EcoVisor F4 环境安全检查器在加拿大正式上市

Testing with EcoVisor F4 (Nitrate Tester, Dosimeter, EMF meter, TDS meter)

EcoVisor F4的四合一功能可以探测硝酸盐,辐射,电磁场,和水中的总溶解物体。

EcoVisor F4可以:

  • 探测水果和食物中的硝酸盐 (硝酸盐单侧器)
  • 探测日常生活接触到的背景核辐射 (剂量计)
  • 探测电磁场的强度 (电磁场探测仪)
  • 探测水中的总溶解物体 (水溶物探测仪)
SOEKS EcoVisor F4 interface is available in 11 languages: English, Spanish, Chinese, Russian, French, German, Turkish, Ukrainian, Bulgarian, Poland, Romanian!
EcoVisor’s interface is available in 11 languages: English, Spanish, Chinese, Russian, French, German, Turkish, Ukrainian, Bulgarian, Poland, Romanian!
1 Star2 Stars3 Stars4 Stars5 Stars (4 votes, average: 5.00 out of 5)
Loading...

Biologic Fate of Nitrates and Nitrites in the Body

Testing with EcoVisor F4 (Nitrate Tester, Dosimeter, EMF meter, TDS meter)

What Is the Biologic Fate of Nitrates and Nitrites in the Body?

Exposure to nitrates and nitrites may come from both internal nitrate production and external sources.

Intake of some amount of nitrates is a normal part of the nitrogen cycle in humans.

The mean intake of nitrate per person in the United States is about 40–100 milligrams per day (mg/day) (in Europe it is about 50–140 mg/day).

Nitrate can be synthesized endogenously from nitric oxide (especially in the case of inflammation), which reacts to form nitrite.

Nitrite and nitric oxide can be produced and utilized from exogenous and endogenous sources.

A schematic diagram of the physiologic disposition of nitrate, nitrite
Figure 1
A schematic diagram of the physiologic disposition of nitrate, nitrite, and nitric oxide (NO) from exogenous (dietary) and endogenous sources. The action of bacterial nitrate reductases on the tongue and mammalian enzymes that have nitrate reductase activity in tissues are noted by the number 1. Bacterial nitrate reductases are noted by the number 2. Mammalian enzymes with nitrite reductase activity are noted by the number 3.

Absorption Nitrates and Nitrites

In the proximal small intestine, nitrate is rapidly and almost completely absorbed (bioavailability at least 92%).

  • Inorganic nitrate/nitrite can be absorbed via inhalation.
  • Inorganic nitrate/nitrite does not undergo first pass metabolism.

Distribution Nitrates and Nitrites

Inorganic nitrates/nitrites are distributed widely through the circulation with approximately 25% of absorbed nitrate concentrating in the salivary glands.

Salivary, plasma, and urinary levels of nitrate and then nitrite rise abruptly after ingestion.

An increase in inorganic nitrite levels peaks around 3 hours post ingestion and can be detected about an hour after ingestion.

Metabolism of Inorganic Nitrates and Nitrites

The two main metabolic pathways for inorganic nitrates / nitrites are

  • The nitrate-nitrite-NO pathway (Figure 1) and
  • Enterosalivary circulation pathway (nitrate reductase activity of bacteria on the tongue generates nitrite and nitrite which is metabolized to NO in the stomach and circulation).

Approximately 5%–10% of the total nitrate intake is converted to nitrite by bacteria in the saliva, stomach, and small intestine.

  • In vivo conversion of nitrates to nitrites significantly enhances nitrates’ toxic potency.
  • This reaction is pH dependent, with no nitrate reduction occurring below pH 4 or above pH 9.
  • The high pH of the infant gastrointestinal system makes them more susceptible to nitrite toxicity from elevated nitrate/nitrite ingestion.

The metabolic pathway of plasma and tissue nitrates depends on local conditions such as tissue oxygenation, and inflammatory state. In the skin, local conditions also include ultraviolet light exposure.

Nitrate can be reduced to nitrite and nitric oxide when needed physiologically or as part of pathological processes (see Figure 1).

Mammalian metalloproteins and enzymes that have nitrate reductase activity include aldehyde oxidase, heme proteins, mitochondria and xanthine reductase.

The reaction of nitrite with endogenous molecules to form N-nitroso compounds may have toxic or carcinogenic effects.

Excretion Nitrates and Nitrites

Approximately 60% to 70% of an ingested nitrate dose is excreted in urine within the first 24 hours.

About 25% is excreted in saliva through an active blood nitrate transport system and potentially is reabsorbed.

Half-lives of parent nitrate compounds are usually less than 1 hour; half-lives of metabolites range from 1 hour to 8 hours.

In the Fourth National Report on Human Exposure to Environmental Chemicals, urinary levels of nitrate were measured in a subsample of the National Health and Nutrition Examination Survey (NHANES) consisting of participants aged 6 years and older during 2007-2008. The geometric mean for urinary nitrate (in mg/g of creatinine) for the US population aged 6 years and older during 2007-2008 was 47.7, with a 95% confidence interval of 45.9-49.7. Note that these measurements are used in population based public health research and not intended for clinical decision making on individual patients.

Key Points the Biologic Fate of Nitrates and Nitrites in the Body

  • Exposure to nitrate and nitrites may come from both internal nitrate production and external sources.
  • Intake of some amount of nitrates is a normal part of the nitrogen cycle in humans.
  • Nitrate can be reduced to nitrite and nitric oxide when needed physiologically or as part of pathological processes depending on local conditions such as inflammation and tissue oxygenation.
  • In vivo conversion of nitrates to nitrites significantly enhances nitrates’ toxic potency.
  • Approximately 5%–10% of the total nitrate intake is converted to nitrite by bacteria in the saliva, stomach, and small intestine.
  • 60-70% of an ingested nitrate dose is excreted in urine within 24 hours.
1 Star2 Stars3 Stars4 Stars5 Stars (3 votes, average: 5.00 out of 5)
Loading...

Brain uses fluid to flush out trash every night

Brain uses fluid to flush out trash every night

During deep sleep, cerebrum cleans what it doesn’t need, study finds

During deep sleep, the brain may be tidying up the detritus that accumulates during a hard day of thinking, a recent study suggests.

Brain uses fluid to flush out trash every night
A study suggests the brain wipes out detritus with fluid as we sleep

Researchers have found that during slow-wave sleep in particular – the type of slumber sandwiched between periods of dreaming – a sort of cleaning fluid pulses into the brain, taking out the trash as it recedes, according to a report published in Science.

Using high-speed brain imaging, the researchers were able to map out a series of events that occur as the brain enters deep sleep and brain waves start to slow and synchronize.

They found that the blood flow to the brain diminishes, allowing for an influx of clear, colourless cerebrospinal fluid (CSF). That fluid surges in and sloshes around, washing away the day’s detritus of proteins and other waste substanc­es that might harm the brain if they aren’t cleared out. 

“We haven’t ever seen CSF waves on this scale in the awake brain, suggesting that sleep involves a unique pattern of fluid flow in the brain,” said Laura Lewis, an assis­tant professor of biomedical engi­neering at Boston University and the study’s senior author.

“Previous studies in animals from other labs have shown that during sleep, proteins such as be­ta-amyloid (one of two hallmark proteins implicated in Alzheimer’s disease) are cleared more rapidly from the brain,” Lewis said. “Based on these studies; we wondered why this might occur and we wanted to ask whether CSF changes during sleep because CSF is thought to be important for waste removal.” 

Lewis and her colleagues suspect that poor sleep in patients with neurological disorders might im­pact the tidying up process, leaving waste materials to accumulate, eventually leading to degeneration.

“We’re running new studies to test how these CSF waves may change in healthy aging and in neurological disorders,” she said. “We’re also going to test wheth­er this would be associated with less waste removal from the brain during sleep in these patients.”

The new research shows how the rhythmic flow of fluid during deep sleep could be the way the brain washes away waste, Danish researchers write in a commentary that accompanied the new study.

Understanding that process might shed a light on how dis­turbed sleep could be linked to certain neurologic disorders, write Soren Grubb, an assistant professor in the department of neuroscience at the University of Copenhagen, and Martin Laurit­zen, a professor of clinical neuro­physiology at Rigshospitalet.

“Disturbances of (slow wave sleep) commonly accompany ag­ing, major depressive disorders and dementia,” they note.

“It will be interesting to assess whether the CSF dynamics linked to SWS can be used as a biomark­er for disease states and whether strategies to restore SWS can res­cue brain function in neurodegen­eration.”

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...

How to clean your CPAP equipment – Daily cleaning:

Mask: Remove the mask / nasal pillows from the headgear. Clean with warm, soapy water. Rinse;

Tubing: Wash in warm soapy water, then rinse and air dry;

Humidifier: Empty the humidifier and let it air dry. Change the water in the humidifier.

How to clean your CPAP equipment

1 Star2 Stars3 Stars4 Stars5 Stars (2 votes, average: 5.00 out of 5)
Loading...

How we could sleep better – in less time everyday

We can now amplify the restorative benefits of sleep. Could this help us cope with later nights and early mornings?

We often wear our sleeplessness as a badge of pride – a measure of our impossibly hectic schedules. Thomas EdisonMargaret ThatcherMartha Stewart and Donald Trump have all famously claimed to get by on just four or five hours’ sleep a night – much less than the seven-to-nine hours recommended to most adults. Many of us are following suit: according to the Centers for Disease Control and Prevention, more than one third of US adults fail to get enough sleep on a regular basis.

The consequences – including impaired memory and decision making, and increased risk of infection and obesity –  are well known, but easy to ignore. When our immediate demands exceed the hours in the day, sleep is still our top sacrifice.

But what if we were able to simply optimise the sleep experience so that we enjoyed most of the benefits of deep sleep, in less time?

This possibility may be closer than it sounds, thanks to new ‘sleep optimisation’ techniques. Various experiments across the world have shown that it is possible to boost the efficiency of the brain’s night-time activity – speeding up the descent into deep sleep and enhancing our rest once we get there.

It sounds almost too good to be true. Is it?

A slower beat

On a regular night, the brain cycles through many different stages of sleep, each with a characteristic pattern of ‘brain waves’, in which neurons in different regions of the brain fire together, in synchrony, at a particular rhythm. (It’s a bit like a crowd chanting or beating a drum in unison).

It is notoriously hard to convince sleep-deprived people to make the necessary lifestyle changes

During the rapid eye movement (REM) phases that rhythm is fairly fast – during which time we are most likely to dream. But at certain points our eyes cease to move, our dreams fade and the rhythm of the brain waves drops to less than one ‘beat’ a second – at which point we enter our deepest, most unresponsive state of unconsciousness called ‘slow-wave sleep’.

It is this stage that has been of particular interest to scientists investigating the possibility of sleep optimisation.

Margaret Hilda Thatcher, Baroness Thatcher, LG, OM, DStJ, PC, FRS, HonFRSC (née Roberts; 13 October 1925 – 8 April 2013) was a British stateswoman who served as prime minister of the United Kingdom from 1979 to 1990 and leader of the Conservative Party from 1975 to 1990. She was the longest-serving British prime minister of the 20th century and the first woman to hold that office. A Soviet journalist dubbed her "The Iron Lady", a nickname that became associated with her uncompromising politics and leadership style. As Prime Minister, she implemented policies known as Thatcherism.
Margaret Thatcher is one of many powerful figures throughout history who have claimed to sleep on four or five hours a night, well below optimal levels.

Research since the 1980s has shown that slow-wave sleep is essential for the brain’s maintenance. It allows the necessary brain regions to pass our memories from short-term to long-term storage – so that we don’t forget what we have learnt. “The slow waves facilitate the transmission of information,” says Jan Born, director of the Department of Medical Psychology and Behavioural Neurobiology at the University of Tübingen, Germany.

The slow waves may also trigger the flow of blood and cerebrospinal fluid through the brain, flushing out potentially harmful debris that could cause neural damage. They also lead to dips in the stress hormone cortisol and help to rejuvenate the immune system so that it is readier to fight incoming infections.

Such results led scientists including Born to wonder whether we might therefore be able to enhance the benefits of sleep and improve our daytime functioning by boosting the production of those slow waves.

One of the most promising techniques to do so works a bit like a metronome counting the brain into the correct rhythms. Experimental participants wear a headset that records their brain activity and notes when they have started to make those slow waves. The device then plays short pulses of gentle sound, beginning in sync with the brain’s natural slow waves, at regular intervals over the night. The sounds are quiet enough to avoid waking the participant, but loud enough to be registered, unconsciously, by the brain.

the right brain rhythms, deepening the slow-wave sleep compared with people receiving sham stimulation
More companies are chasing ways to help customers achieve the deep, ‘slow-wave’ sleep that’s essential for memory and brain maintenance

Born has led much of the experimental work, finding that this gentle auditory stimulation is just enough to reinforce the right brain rhythms, deepening the slow-wave sleep compared with people receiving sham stimulation. Participants wearing the headset performed better on memory tests, showing increased recall for material they had learnt the day before. It also altered their hormonal balance – reducing their cortisol levels – and led to an improved immune response.

In the trials to date, participants haven’t yet reported unwanted responses to the technique. “We can’t really be sure, but so far there are no obvious side effects,” says Born.

Better sleep, in a store near you

Most of the studies attempting to boost slow-wave sleep have been conducted on small groups of young, healthy participants, so to be certain of the benefits of boosting slow-wave sleep, we would need to see larger trials on more diverse groups. But based on the existing evidence, the technology has already made its way into a handful of consumer devices, mostly in the form of headbands to be worn overnight.

The French start-up Dreem, for instance, has produced a headband (available for around €400 or £330) that also uses auditory stimulation to boost slow-wave sleep using a similar set-up to the scientific experiments – effects have been confirmed in a peer-reviewed trial. The Dreem device also connects to an app that analyses your sleep patternsand offers practical advice and exercises to help you get a better night’s rest. These include things such as meditation and breathing exercises that might ensure you get to sleep quicker and with fewer awakenings during the night. The aim is to improve overall sleep quality across the night for anyone who feels that they could do with a deeper rest.

Electronics giant Philips is also getting in on the sleep aid game: its sound-based SmartSleep system aims to maximise the benefits of adequate rest

Philips’s SmartSleep Deep Sleep Headband, in contrast, is very explicitly aimed at making up for some of the ill-effects of sleep deprivation – for people “who, for whatever reason, are simply not giving themselves an adequate sleep opportunity”, says David White, Philips’ chief scientific officer.

The device was first launched in 2018, and like Dreem’s product, it is a headband that senses the brain’s electrical activity and periodically plays short bursts of sound to stimulate the slow oscillations that are characteristic of deep sleep. It relies on smart software that carefully adapts the volume of its sound over time to ensure that it delivers the optimum level of stimulation for the specific user. (The device is currently only available in the US for $399.)

White agrees that the device cannot fully replace a full night’s sleep, but he says that it is notoriously hard to convince sleep-deprived people to make the necessary lifestyle changes. By amplifying the benefits of the sleep they do manage to get, this device should at least help them to function better in daily life. Along these lines, Philips’s own experiments have reportedly confirmed that the SmartSleep boosts slow-wave sleep in sleep-deprived people, and that it mitigates some of the immediate effects like poorer memory consolidation.

Future research may suggest many more innovative ways to optimise our sleep. Aurore Perrault at Concordia University in Montréal has recently tested a gently rocking bed that swayed back and forth every four seconds.

Participants were quicker to enter slow-wave sleep, and spent more time in that crucial sleep cycle, as the brain waves synchronised with the external movement

She says that the technique was inspired by a colleague’s new-born baby being rocked to sleep, leading the team to wonder whether adults may also benefit from gentle movement. Sure enough, they found that the participants were quicker to enter slow-wave sleep, and spent more time in that crucial sleep cycle, as the brain waves synchronised with the external movement. As you might hope, they also reported feeling more relaxed at the end of the night, and this was again accompanied by the expected knock-on benefits for their memory and learning. “That was the cherry on the top,” says Perrault.

If such a bed were brought to market it could serve a similar purpose to the sound-stimulating headbands. Perrault is particularly interested whether it might help older people. The amount of time we spend in short-wave sleep seems to decline as we age, potentially contributing to some age-related memory problems – and she hopes that gently swaying beds may be one way to counteract that.

Still, get some sleep

Although the field is still in its infancy, these studies show that there is a lot of promise in the general concept of sleep optimisation to increase the power of our slumbers (however much or little we get).

Perrault and Born are both optimistic about the potential of the commercial products using pulses of sound to stimulate those regenerative slow waves. Perrault emphasises that we still need larger studies to ensure their effectiveness outside the carefully controlled conditions of the lab – but she welcomes that this research could now benefit a wider population.

“It’s great that they’re trying, more and more, to use external stimulation because we know that it impacts sleep,” says Perrault.

In the future, it will be interesting to see whether sleep optimisation could also bring benefits in the long term. We know that chronic sleep loss can increase the risk of conditions like diabetes and even Alzheimer’s disease – but it’s by no means clear that these new techniques will help reduce those risks.

For now the only guaranteed way of reaping all the benefits of sleep – both long and short-term – is to make sure you get enough of it. Whether or not you decide to give these devices a try, you should attempt to schedule more early nights, and avoid too much alcohol, caffeine and screen time before bed – factors that are all known to damage the quality of our sleep.

Our brains cannot function without a recharge – and anyone hoping to live a happy, healthy, productive life needs to wake up to that fact.

1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)
Loading...

Risk from Overexposure to Nitrates and Nitrites

Testing with EcoVisor F4 (Nitrate Tester, Dosimeter, EMF meter, TDS meter)

Who is at most Risk of Adverse Health Effects from Overexposure to Nitrates and Nitrites?

Nitrate contaminated water
Nitrate contaminated water

Infants less than 4 months of age are most at risk of adverse health effects from over exposure to nitrates and nitrites through ingestion of formula diluted with nitrate contaminated water.

Although there is no nutritional indication to add complementary foods to the diet of a healthy term infant before 4 to 6 months of age, the American Academy of Pediatrics suggests that home-prepared infant foods from vegetables (i.e. spinach, beets, green beans, squash, carrots) should be avoided until infants are 3 months or older.

Gastroenteritis with vomiting and diarrhea can exacerbate nitrite formation in infants and has been reported to be a major contributor to methemoglobinemia risk in infants independent of nitrate / nitrite ingestion.

In addition, the pregnant woman and her fetus might be more sensitive to toxicity from nitrites or nitrates at or near the 30th week of pregnancy.

Individuals with glucose-6-phsphate dehydrogenase (G6PD) deficiency may have greater susceptibility to the oxidizing effects of methemoglobinemia inducers.

1 Star2 Stars3 Stars4 Stars5 Stars (3 votes, average: 5.00 out of 5)
Loading...

About Sleep

Get OFF and Go to Bed

Why do we sleep?

Why do we sleep?
Why do we sleep?

Sleep is a normal and indeed essential part of our lives. But if you think about it, it is such an odd thing to do.
At the end of each day we become unconscious and paralysed. Sleep made our ancestors vulnerable to attack from wild animals. So the potential risks of this process, which is universal among mammals and many other groups, must offer some sort of evolutionary advantage.
Research in this area was slow to take off. But recently there has been a series of intriguing results that are giving researchers a new insight into why we sleep and what happens when we do it.

Why do I sleep?

Why do I sleep?
Why do I sleep?

Scientists simply don’t know for sure. In broad terms researchers believe it is to enable our bodies and especially our brains to recover. Recently researchers have been able to find out some of the detailed processes involved.
During the day brain cells build connections with other parts of the brain as a result of new experiences. During sleep it seems that important connections are strengthened and unimportant ones are pruned. Experiments with sleep-deprived rats have shown that this process of strengthening and pruning happens mostly while they sleep.
And sleep is also an opportunity for the brain to be cleared of waste.
A group led by Prof Maiken Nedergaard at the University of Rochester Medical Centre in New York discovered a network of microscopic fluid-filled channels in rats that clears waste chemicals from the brain. Prof Nedergaard told us when her research was first published in 2013 that this process occurs mostly when the brain is shut off.
“You can think of it like having a house party. You can either entertain the guests or clean up the house, but you can’t really do both at the same time.”

What happens when I don’t get enough sleep?

What happens when I don't get enough sleep?
What happens when I don’t get enough sleep?

It seems that a lack of sleep alters the way in which the genes in the body’s cells behave.
Researchers at Surrey University in Guildford have found that genes involved in inflammation seem to increase their activity. Dr Malcolm von Schantz, who is involved with the Surrey research, believes that the genes are responding to lack of sleep as if the body is under stress.
He speculates that in the distant past in times of stress our ancestors’ bodies would prepare themselves for injury by activating these inflammation genes which would cushion the effects of attacks by wild animals or human enemies.
“It puts the body on alert for a wound but no wound happens,” he told Sleep Advice.
“This could easily help explain the links between sleep deprivation and negative health outcomes such as heart disease and stroke.”
In modern times though preparing for an injury that never happens has no beneficial effect – in fact the consequent activation of the immune system might increase the risk of heart disease and stroke.

Why is it hard to think when I am tired?

Why is it hard to think when I am tired?
Why is it hard to think when I am tired?

The expression “half asleep” might be an accurate description of what is going on in the brain when you are feeling slow-witted.
Research suggests that parts of the human brain may well be asleep when it is sleep-deprived. Studies on whales and dolphins show that when asleep they continue to use half of their brain to swim and come up to the surface for air.
A study on human patients showed that something similar goes on in our brains. As they became more sleep-deprived, parts of their brain became inactive while they were still awake.
What’s more the local sleep areas move around the brain. So although when we go to bed we think one moment we are awake and then there is an abrupt change to sleep – it may well be more of a continuous process.

What is the role of dreaming?

What is the role of dreaming?
What is the role of dreaming?

That’s a question that psychiatrists, notably Carl Jung and Sigmund Freud, have tried to answer but with limited success. More recently a team at the ATR Computational Neuroscience Laboratories in Kyoto in Japan has begun trying to answer some of these questions by building the beginnings of a dream-reading machine.
They asked volunteers to doze off in an MRI scanner and recorded their brain patterns. The volunteers were then woken up and asked to tell researchers what they were dreaming about.
The team then listed 20 separate categories of dream content from these accounts such as dwelling, street, male, female, building or computer screen. The researchers then compared the accounts with the pattern of activity in the area of the brain responsible for processing visual information – and to their amazement they found that there was a correlation. So much so that they could predict which of the 20 different categories they had listed the patient had dreamt of with 80% accuracy.
The device is a very rough tool but it may well be a first step to something that can see in more detail what happens in our dreams and so help researchers learn more about why we dream.

How is modern life affecting our sleep patterns?

How is modern life affecting our sleep patterns?
How is modern life affecting our sleep patterns?

Several studies show that the light bulb has led people shifting their day and getting less sleep. On average we go to bed and wake up two hours later than a generation ago.
The US Centres for Disease Control reported in 2008 that around a third of working adults in the US get less than six hours sleep a night, which is 10 times more than it was 50 years ago. In a later study it was also reported that nearly half of all the country’s shift workers were getting less than six hours sleep.
And a study led by Prof Charles Czeisler of Harvard Medical School found that those who read electronic books before they went to bed took longer to get to sleep, had reduced levels of melatonin (the hormone that regulates the body’s internal body clock) and were less alert in the morning.
At the time of publication he said: “In the past 50 years, there has been a decline in average sleep duration and quality.
“Since more people are choosing electronic devices for reading, communication and entertainment, particularly children and adolescents who already experience significant sleep loss, epidemiological research evaluating the long-term consequences of these devices on health and safety is urgently needed.”

What’s stopping you sleeping?

– One in eight of us keep our mobile phones switched on in our bedroom at night, increasing the risk our sleep will be disturbed.

Mobile Phones - stopping you sleeping
Mobile Phones – stopping you sleeping

– Foods such as bacon, cheese, nuts and red wine, can also keep us awake at night.

Bacon, Cheese, Nuts, Red Wine - stopping you sleeping
Bacon, Cheese, Nuts, Red Wine – stopping you sleeping

Many studies report that there is evidence that sleep loss is associated with obesity, diabetes, depression and lower life expectancy – while others, such as Prof James Horne, a sleep researcher at Loughborough University believes that such talk amounts to “scaremongering”.
“Despite being ‘statistically significant’, the actual changes are probably too small to be of real clinical interest,” he told Sleep Advice. “Most healthy adults sleep fewer than that notional ‘eight hours’ and the same went for our grandparents.
“Our average sleep has fallen by less than 10 minutes over the last 50 years. Any obesity and its health consequences attributable to short sleep are only seen in those few people sleeping around five hours, where weight gain is small – around 1.5kg per year – which is more easily rectified by a better diet and 15 minutes of daily brisk walking, rather than by an hour or so of extra daily sleep.”
A team from the universities of Surrey and Sao Paulo in Brazil have spent the past 10 years tracking the health of the inhabitants of Bapendi, a small town in Brazil where modern day lifestyles haven’t yet taken hold.
Many of the inhabitants of this town get up and go to bed early. The investigators hope to find out soon whether the old adage “early to bed and early to rise” really does make us, if not “wealthy and wise”, at least “healthy and wise”.

1 Star2 Stars3 Stars4 Stars5 Stars (4 votes, average: 5.00 out of 5)
Loading...